CS 320: Concepts of Programming Languages

Wayne Snyder
Computer Science Department
Boston University

Lecture 18: Comments on Project
o IO Monad and Creating a Repl
o Simple Type Checking

Project Schedule

e Milestone 1: 4/23/19
o Join a Piazza group as organized by Prof Snyder

o Create a group repo, and summarize your plans in the readme:
= Which Additional Features you plan to do (tentative, can be changed)

= Who has primary responsibility for what (should be approximately equal, and, again, can be changed)
o Completion is worth 5pts/100.

e Milestone 2: 4/29/19
o Details TBA
o Completion is worth 5pts/100.

e Final Deadline: 5/3/19
o Completion is worth 90pts/100.

Required Features

¢ Additional operators and functions as explained below, including:

o Add support for the following types of data: floats, characters, strings, and lists.

o All operators and functions should report a sensible error message when applied incorrectly during execution (this is
called "dynamic type checking"). For example [0,1] !! 10 should return an error like "Can't get element 10 from a
2 elementlist"and 7 !! 10 should return "7 is not a list". No input should cause your program to crash, instead, you
need to check for all possible errors at execution time.

o Additional syntax for lists. For example [1,2,3]

o Single and multiline comments. For example x+ 7 —— this is a comment and x+ {- this is a multi-line
comment-} 7

Let's look at the list of operators and functions...

https://github.com/BU-CS320/Spring-2019/blob/master/project/INSTRUCTIONS.md

For parsing, look at the new version of the basic parsing code posted with Lecture 14....

http://www.cs.bu.edu/fac/snyder/cs320/Homeworks%20and%20Labs/ParserExample.hs

https://github.com/BU-CS320/Spring-2019/blob/master/project/INSTRUCTIONS.md
http://www.cs.bu.edu/fac/snyder/cs320/Homeworks%20and%20Labs/ParserExample.hs

Changing the EnvUnsafe monad

o Appropriate changes to "EnvUnsafe" monad, including support for logging:

o a print keyword

o asequencing infix operator ;

You will have to combine the EnvUnsafe monad and the Writer
monad to create a new monad, called, perhaps, EnvUnsafeLog.

Changing the EnvUnsafe monad

You will have to combine the EnvUnsafe monad and the Writer
monad to create a new monad, called, perhaps, EnvUnsafeLog.

EnvUnsafe = Reader + 0Ok

data Unsafe a = Error String | Ok a deriving (Show, Eq)
data EnvUnsafe env a = EnvUnsafe (env —> Unsafe a)

instance Functor (EnvUnsafe e) where
— fmap :: (a => b) —> EnvUnsafe env a —> EnvUnsafe env b
fmap f (EnvUnsafe g) = EnvUnsafe $ \e —> case g e of

Error str —> Error str
0k x —> 0k (f x)

instance Monad (EnvUnsafe env) where
——return :: a —> EnvUnsafe a
return a = EnvUnsafe (_ —> 0k a)

——(>>=) :: EnvUnsafe a —> (a —> EnvUnsafe b) —> EnvUnsafe b
(EnvUnsafe g) >>= f = EnvUnsafe $ \e —> case g e of
Error str —> Error str

0Ok x —> let (EnvUnsafe h) = f x
in h e

EnvUnsafelog = EnvUnsafe + Writer

data Unsafe a = Error String | Ok a deriving (Show, Eq)

data EnvUnsafelLog envType resType logType = EnvUnsafelog

Writer

data Writer a = Writer a [bl
-— Make it into a functor

instance Functor Writer where
— fmap :: (a —=> b) —> Writer a —> Writer b
fmap f (Writer x log) = Writer (f x) log

—— boilerplate, don't touch!
instance Applicative Writer where
pure = return
(<k>) = ap —— imported from Control.Monad

instance Monad Writer where

—— return :: a — Writer a
return x = Writer x []

— (>>=) :: Writer a —> (a —> Writer b) —> Writer b
(Writer x log) >>= f = let (Writer y log2) = f x
in (Writer y (log ++ log')

(envType —> (Unsafe resType, [logTypel))

Changing the EnvUnsafe monad

These changes will also be reflected in the Value returned by eval, since
a function may now write to the log AND return a value:

data Unsafe a = Error String | Ok a deriving (Show, Eq)

data EnvUnsafeLog env a = EnvUnsafeLog (env —> (Unsafe a, [Stringl))

data Val = I Integer | F Double | B Bool | C Char
| Ls [Vall
|

Fun (val —> (Unsafe Val, [Stringl))

Static Checking

Static error checking takes place after parsing but before evaluation:

¢ Implement a static check that takes inan Ast and warns when a variable is used when not declared. For instance \ x -
> y + 10 should warn something like "y is not in scope". This will not be part of your parser or interperter(eval), but
should be implemented in a separate check function which is normally executed between the parser and the evaluator.

This is not TOO different than your check for whether a lambda
expression was closed (had no free variables) in Week 9 except it goes the
opposite direction (outside to the innermost terms):

freeVars :: Term —> Set String

freeVars (Lam v bod) = Set.delete v $ freeVars bod —— TODO: undefined
freeVars (Var v) = Set.singleton v

freeVars (App f a) = freeVars f "Set.union” freeVars a

isClosed :: Term —> Bool
isClosed t = Set.null (freeVars t)

Creating a REPL: Interactive Programming with the IO Monad

¢ 5pt A Read-Eval-Print loop, so that users can work interactively with your language, including preloading a Prelude-like
initialization file. You would need to learn about the IO monad (start with Chapter 10 in Hutton).

The do notation (with a new monad, the IO Monad) provides a clean
way to deal with computations whose context is input and output with

the user, say the Keeper of the Bridge of Death:

bridgeOfDeath =
do putStr "What 1s your name? "
name <- getlLine
putStr "What 1s your quest? "
quest <- getlLine
putStr "What i1s your favorite color? "
color <- getLine

Main> bridgeOfDeath

What i1s your name? Sir Launcelot of Camlot
What 1s your quest? To seek the Holy Grail

What i1s your favorite color? Blue

Right. Off you go, Sir Launcelot of Camlot!

Interactive Programming with the IO Monad

The IO Monad is polymorphic and three basic IO functions which operate in the

context of the screen and keyboard to read and write characters:

—-— get a character from the keyboard via repl
getChar :: IO Char

getChar = ... built 1in, you don’t want to know....

-— write a character to the repl
putChar :: Char -> IO () -— returns null wvalue
putChar ¢ = ... built in, you don’t want to know....

—— Jjust return a value in Haskell code, no input/output
return :: a —-> 10 a

return v = ... built in, you don’t want to know....

Interactive Programming with the IO Monad

act :: IO (Char, Char)
act = do x <- getChar
getChar

y <- getChar
return (x,Vy)

Main> act
4
6('4','6’)

Main> act
a

b<|a|,'bl)

Main>

Interactive Programming with the IO Monad

How to loop through user input and respond?

main = do putStr "Input> "
line <- getlLine
putStrLn line
main

Repl> main

Input> hi there!
hi there!

Input> ok

ok

Input> how

how

Input> do

do

Input> I end this>
T end this>

Input> "ClInterrupted.
Repl>

Interactive Programming with the IO Monad

Adding bells and whistles is not too hard....

miniH :: I0 ()
miniH = do putStr "\nMiniHaskell> "
line <- getlLine
case line of
"" —> miniH
('q':_) —> putStrLn "Bye!\n"
('Q':_) —> putStrLn "Bye!\n"
inp -> do putStrLn $ process inp
miniH

process :: String -> String
process s = s

To create a REPL:

1.

Add a global Map which is carried along during
interaction (either explicit parameter or Reader
monad);

Add a definition "let x = e" to the Ast as (Def
String Ast), which inserts a definition into the
global Map;

Modity eval so it checks this global evironment
after checking local environment.

Main> miniH

MiniHaskell>
7

MiniHaskell>
hi there!

MiniHaskell>
MiniHaskell>

MiniHaskell>
Bye!

Main>

hi there!

Simple Static Type Checking

Static Checking

e 5pt Warn when a var is intruduced but never used
¢ 15pt Checking simple types, where every variable has a type annotation

e 20-30pt Advanced type checking: Bidirectional, Hindly-milner, or dependently typed **

Simple Static Type Checking

A recursive, bottom-up strategy works well for static type
CheCklng: import OkMonad

import Data.Map (Map)

import qualified Data.Map as Map

data Type = IntegerType | FloatType deriving (Eq, Show)

data Ast = Vallnt Integer
| ValFloat Double
| Plus Ast Ast
deriving Show

—— simple types

getType :: Ast —> 0Ok Type

getType (ValInt _) = return IntegerType

getType (ValFloat _) = return FloatType

getType (Plus x y) =

case (getType x, getType y) of

(Ok IntegerType, Ok IntegerType) —> return IntegerType
(Ok FloatType, Ok FloatType) -> return FloatType

(_, _) == Error $ "Type error for " ++ show (Plus x y)

Main> getType (ValInt 5)

Ok IntegerType

Main> getType (Plus (Plus (ValInt 5) (ValInt 2)) (ValInt 6))

Ok IntegerType

Main> getType (Plus (Plus (ValInt 5) (ValFloat 2.4)) (ValInt 06))

Error "Type error for Plus (Plus (ValInt 5) (ValFloat 2.4)) (ValInt 6)"

Simple Static Type Checking

This can be modified 1n various ways, for example, to allow
coercion (integer -> float):

—— allow coercion

getType2 :: Ast —> 0Ok Type

getType2 (ValInt _) = return IntegerType

getType2 (ValFloat _) = return FloatType

getType2 (Plus x y) =

case (getType2 x, getTypeZ y) of

(Ok IntegerType, Ok IntegerType) —> return IntegerType
(Ok FloatType, Ok IntegerType) —> return FloatType
(Ok IntegerType, Ok FloatType) —> return FloatType

(_, _) —> Error $ "Type error for " ++ show (Plus x y)

Simple Static Type Checking

For your project you would need to change the syntax so that whenever variables are
declared, you must give the type:

(\x :: int -> x + 1) (let x :: float = 3.4 in x * 2)
This information is stored in the Ast:
(Lambda String Type Ast Ast) (Let String Type Ast Ast)

and then used to verify all types, using all the rules you would ordinarily use
for dynamic checking (e.g., head must take a list as argument), plus:

1. No types are polymorphic;
2. All elements 1n lists must have same type; and

3. Functions follow the usual typing rules:

X :: a e :: Db f :: (a => b) e

(\x —> ¢e) :: (a -> Db) (f e) :: Db

The Problem with Recursion...

The basic project language does not allow recursion!

Why? Because of the scope of a let definition:

let fact = (\n -> 1f n < 2 then 1 else n * (fact(n - 1)) in fact 5

What 1s the scope of the definition of fact?

let fact = (\n -> 1f n < 2 then 1 else n * (fact(n - 1)) in fact 5
unbound

How to solve this?

o Create a special letrec function which extends the scope of let definitions to include
the defining expression; or

o Create a global memory whose scope is the entire program, in which variables can be
looked up any time.

