
CS 320: Concepts of Programming Languages

Wayne Snyder
Computer Science Department

Boston University

Lecture 18: Comments on Project
o IO Monad and Creating a Repl
o Simple Type Checking

Project Schedule

Required Features

Let's look at the list of operators and functions...

https://github.com/BU-CS320/Spring-2019/blob/master/project/INSTRUCTIONS.md

For parsing, look at the new version of the basic parsing code posted with Lecture 14....

http://www.cs.bu.edu/fac/snyder/cs320/Homeworks%20and%20Labs/ParserExample.hs

https://github.com/BU-CS320/Spring-2019/blob/master/project/INSTRUCTIONS.md
http://www.cs.bu.edu/fac/snyder/cs320/Homeworks%20and%20Labs/ParserExample.hs

You will have to combine the EnvUnsafe monad and the Writer
monad to create a new monad, called, perhaps, EnvUnsafeLog.

Changing the EnvUnsafe monad

You will have to combine the EnvUnsafe monad and the Writer
monad to create a new monad, called, perhaps, EnvUnsafeLog.

Changing the EnvUnsafe monad

EnvUnsafe = Reader + Ok Writer

EnvUnsafeLog = EnvUnsafe + Writer

These changes will also be reflected in the Value returned by eval, since
a function may now write to the log AND return a value:

Changing the EnvUnsafe monad

Static error checking takes place after parsing but before evaluation:

This is not TOO different than your check for whether a lambda
expression was closed (had no free variables) in Week 9 except it goes the
opposite direction (outside to the innermost terms):

Static Checking

The do notation (with a new monad, the IO Monad) provides a clean
way to deal with computations whose context is input and output with
the user, say the Keeper of the Bridge of Death:

Creating a REPL: Interactive Programming with the IO Monad

bridgeOfDeath =
do putStr "What is your name? "

name <- getLine
putStr "What is your quest? "
quest <- getLine
putStr "What is your favorite color? "
color <- getLine

Main> bridgeOfDeath
What is your name? Sir Launcelot of Camlot
What is your quest? To seek the Holy Grail
What is your favorite color? Blue
Right. Off you go, Sir Launcelot of Camlot!

The IO Monad is polymorphic and three basic IO functions which operate in the
context of the screen and keyboard to read and write characters:

-- get a character from the keyboard via repl
getChar :: IO Char
getChar = ... built in, you don’t want to know....

-- write a character to the repl
putChar :: Char -> IO () -- returns null value
putChar c = ... built in, you don’t want to know....

-- just return a value in Haskell code, no input/output
return :: a -> IO a
return v = ... built in, you don’t want to know....

Interactive Programming with the IO Monad

act :: IO (Char, Char)
act = do x <- getChar

getChar
y <- getChar
return (x,y)

Main> act
4
6('4','6’)

Main> act
a
b('a','b’)

Main>

Interactive Programming with the IO Monad

How to loop through user input and respond?

Repl> main
Input> hi there!
hi there!
Input> ok
ok
Input> how
how
Input> do
do
Input> I end this>
I end this>
Input> ^CInterrupted.
Repl>

Interactive Programming with the IO Monad

Adding bells and whistles is not too hard....

Interactive Programming with the IO Monad

Main> miniH

MiniHaskell> 7
7

MiniHaskell> hi there!
hi there!

MiniHaskell>

MiniHaskell>

MiniHaskell> q
Bye!

Main>

To create a REPL:
1. Add a global Map which is carried along during

interaction (either explicit parameter or Reader
monad);

2. Add a definition "let x = e" to the Ast as (Def
String Ast), which inserts a definition into the
global Map;

3. Modify eval so it checks this global evironment
after checking local environment.

Simple Static Type Checking

A recursive, bottom-up strategy works well for static type
checking:

Simple Static Type Checking

Main> getType (ValInt 5)
Ok IntegerType
Main> getType (Plus (Plus (ValInt 5) (ValInt 2)) (ValInt 6))
Ok IntegerType
Main> getType (Plus (Plus (ValInt 5) (ValFloat 2.4)) (ValInt 6))
Error "Type error for Plus (Plus (ValInt 5) (ValFloat 2.4)) (ValInt 6)"

This can be modified in various ways, for example, to allow
coercion (integer -> float):

Simple Static Type Checking

For your project you would need to change the syntax so that whenever variables are
declared, you must give the type:

(\x :: int -> x + 1) (let x :: float = 3.4 in x * 2)

This information is stored in the Ast:

(Lambda String Type Ast Ast) (Let String Type Ast Ast)

and then used to verify all types, using all the rules you would ordinarily use
for dynamic checking (e.g., head must take a list as argument), plus:

1. No types are polymorphic;

2. All elements in lists must have same type; and
3. Functions follow the usual typing rules:

Simple Static Type Checking

x :: a e :: b

(\x -> e) :: (a -> b)

f :: (a -> b) e :: a

(f e) :: b

The basic project language does not allow recursion!

Why? Because of the scope of a let definition:

let fact = (\n -> if n < 2 then 1 else n * (fact(n – 1)) in fact 5

What is the scope of the definition of fact?

let fact = (\n -> if n < 2 then 1 else n * (fact(n – 1)) in fact 5

unbound

How to solve this?

o Create a special letrec function which extends the scope of let definitions to include
the defining expression; or

o Create a global memory whose scope is the entire program, in which variables can be
looked up any time.

The Problem with Recursion...

